| Question | | Answer | Marks | Part Marks and Guidance | |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| 1 $15 x+5$ 2 M1 for 3(5x+2)-1
 brackets oe required for this M1 | | | | | |

$\mathbf{2}$	(a)	(i)	25	1		
		(ii)	$8 \sqrt{5}-6$ isw	2	Or B1 for $4 \sqrt{5}-3$.	
	(b)	-0.5	3	B1 for $16 x-12$ And B1 for $16 x-12+27=7$ or better Or B1 for $f(x)=-5$ And B1 for $4 x-3=-5$ or better		

| $\mathbf{3}$ | (a) | 82 | 1 | | |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| | (b) | $6-7 x$ | 2 | B1 for 6 or $-7 x$ | |

| $\mathbf{4}$ | (a) | 0.6 or $\frac{3}{5}$ | 2 | M1 for $5 x-2=1$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | (b) | $10 x+3$ | 2 | M1 for $5(1+2 x)-2$ | |

| $\mathbf{5}$ | $\mathbf{(a}$ | 19 | 1 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | (b) | $15 t+3$ 3
 nfww
 Condone 3+15t
 M1 for 5(2+3t)-7
 M1 for 10 $+15 t-7$ Allow x instead of t for \mathbf{M} marks | | | |

$\mathbf{6}$	(a)	-5	$\mathbf{1}$		
	(b)	$7 / 2$ oe	$\mathbf{1}$		
	(c)	$1-2 x$ or $1+2 x$ oe as final answer or $a=1$ and $b=-2$	$\mathbf{2}$	M1 for $7-2(3+x)$ Or SC1 for $1+2 x$	NB not 1 mark for each term

| 7 | | $16 x^{2}+12 x+1$ isw | 3 | Allow 1 per term | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathbf{8}$	(a)		14	1		
	(b)	(i)	$6 x+4$ final answer	1		
		(ii)	$6 x+2$ final answer	1		

9	(a)		$r=[\pm] \sqrt{\frac{S}{4 \pi}}$ oe as final answer	3	nfww For all 3 marks, ' $r=$ 'must be stated; allow SC2 if rhs is correct OR M1 for $\frac{S}{4 \pi}=r^{2}$ or $\sqrt{S}=\sqrt{4 \pi} r$ oe M1 for taking square root correctly FT their $r^{2}=\ldots$ or $4 r^{2}=\ldots$. oe or for $\frac{\sqrt{S}}{k}$ oe ft their $\sqrt{S}=k r$ If M0, allow B1 for $[r]=\frac{\sqrt{S}}{4 \pi}$ Or allow B1 for correctly finding r as the subject FT a wrong first step	Allow 'triple decker' fractions for Ms but not for 3 marks eg 2 for $r=\sqrt{\frac{S \div 4}{\pi}}$ (square root symbol must extend below fraction line) MO if r is on both sides Allow M1 for complete correct reverse flowchart
	(b)	($\frac{3}{10} \mathrm{oe}$	1		
		(ii)	0 found as denominator without further wrong working/comment	1	Accept denominator $=0$ oe or 'cannot calculate $3 / 0$ ' or ' $3 / 0=$ error'	0 for $3 / 0=0$ or for $3 / 0=3$ etc or 'you can't divide 0 by 3 '

$\left.\begin{array}{|l|l|l|c|l|l|l|}\hline 10 & \text { (a } & \text { (i) } 1 / 6 & \mathbf{2} & \begin{array}{l}\text { Condone answer in range } 0.16-0.17 \\ \text { M1 for } 1-6 x=0 \text { or better }\end{array} & \begin{array}{l}\text { mark at most accurate e.g. 0.16 }=0.1 \text { gets } \\ \mathbf{2 ~ m a r k s ~} \\ \text { M0 for } 6 f(x)=1\end{array} \\ \hline & & \begin{array}{c}\text { (ii) } a=1 \\ b=-12\end{array} & \mathbf{1} & & \\ \hline & \text { (b) } 2[x+] 4 & 1 & \text { After } 0 \text { scored, M1 for } 1-6(2 x) \text { seen }\end{array}\right]$

Question			Answer	Marks	Part Marks and Guidance	
11	(a)		$\begin{aligned} & 5 a+5 b[=2 a b] \\ & 5 b=2 a b-5 a \text { oe } \\ & {[5 b=] a(2 b-5) \text { oe }} \\ & {[a=] \frac{5 b}{2 b-5} \text { oe }} \end{aligned}$ Or for those who divide first: $\begin{aligned} a+b & =\frac{2 a b}{5} \\ a-\frac{2 a b}{5} & =-b \\ a\left(1-\frac{2 b}{5}\right) & =-b \text { or } \frac{a}{5}(5-2 b)=-b \\ a & =\frac{-5 b}{5-2 b} \end{aligned}$	M1 M1 M1 M1 Or M1 M1 M1 M1	for expanding brackets correctly for collecting a terms correctly on one side, non-a terms on the other, FT for factorising correctly FT; may be implied by final answer for correct division FT by their two-term factor oe for each mark [apply equivalent FT s as above] M0 for triple-decker fraction in final answer	[no ft for remaining Ms from rhs = $2 a+b$ oe resulting in one a term when rearranged] condone no equation award 4 marks only for correct work; withhold last M1 if further work such as incorrect cancelling
	(b)	(i)	2	1		
		(ii)	$6 x+3$ as final answer	2	M1 for 2(3x + 4)-5	

